Sdm qmgrauth (#81)

Implement htpassword changes
This commit is contained in:
Stephen D Marshall
2020-03-27 10:09:41 +00:00
committed by GitHub Enterprise
parent 7f14cc2751
commit c8de2df2cf
383 changed files with 93261 additions and 41 deletions

95
vendor/golang.org/x/crypto/curve25519/curve25519.go generated vendored Normal file
View File

@@ -0,0 +1,95 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package curve25519 provides an implementation of the X25519 function, which
// performs scalar multiplication on the elliptic curve known as Curve25519.
// See RFC 7748.
package curve25519 // import "golang.org/x/crypto/curve25519"
import (
"crypto/subtle"
"fmt"
)
// ScalarMult sets dst to the product scalar * point.
//
// Deprecated: when provided a low-order point, ScalarMult will set dst to all
// zeroes, irrespective of the scalar. Instead, use the X25519 function, which
// will return an error.
func ScalarMult(dst, scalar, point *[32]byte) {
scalarMult(dst, scalar, point)
}
// ScalarBaseMult sets dst to the product scalar * base where base is the
// standard generator.
//
// It is recommended to use the X25519 function with Basepoint instead, as
// copying into fixed size arrays can lead to unexpected bugs.
func ScalarBaseMult(dst, scalar *[32]byte) {
ScalarMult(dst, scalar, &basePoint)
}
const (
// ScalarSize is the size of the scalar input to X25519.
ScalarSize = 32
// PointSize is the size of the point input to X25519.
PointSize = 32
)
// Basepoint is the canonical Curve25519 generator.
var Basepoint []byte
var basePoint = [32]byte{9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
func init() { Basepoint = basePoint[:] }
func checkBasepoint() {
if subtle.ConstantTimeCompare(Basepoint, []byte{
0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
}) != 1 {
panic("curve25519: global Basepoint value was modified")
}
}
// X25519 returns the result of the scalar multiplication (scalar * point),
// according to RFC 7748, Section 5. scalar, point and the return value are
// slices of 32 bytes.
//
// scalar can be generated at random, for example with crypto/rand. point should
// be either Basepoint or the output of another X25519 call.
//
// If point is Basepoint (but not if it's a different slice with the same
// contents) a precomputed implementation might be used for performance.
func X25519(scalar, point []byte) ([]byte, error) {
// Outline the body of function, to let the allocation be inlined in the
// caller, and possibly avoid escaping to the heap.
var dst [32]byte
return x25519(&dst, scalar, point)
}
func x25519(dst *[32]byte, scalar, point []byte) ([]byte, error) {
var in [32]byte
if l := len(scalar); l != 32 {
return nil, fmt.Errorf("bad scalar length: %d, expected %d", l, 32)
}
if l := len(point); l != 32 {
return nil, fmt.Errorf("bad point length: %d, expected %d", l, 32)
}
copy(in[:], scalar)
if &point[0] == &Basepoint[0] {
checkBasepoint()
ScalarBaseMult(dst, &in)
} else {
var base, zero [32]byte
copy(base[:], point)
ScalarMult(dst, &in, &base)
if subtle.ConstantTimeCompare(dst[:], zero[:]) == 1 {
return nil, fmt.Errorf("bad input point: low order point")
}
}
return dst[:], nil
}

View File

@@ -0,0 +1,240 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build amd64,!gccgo,!appengine,!purego
package curve25519
// These functions are implemented in the .s files. The names of the functions
// in the rest of the file are also taken from the SUPERCOP sources to help
// people following along.
//go:noescape
func cswap(inout *[5]uint64, v uint64)
//go:noescape
func ladderstep(inout *[5][5]uint64)
//go:noescape
func freeze(inout *[5]uint64)
//go:noescape
func mul(dest, a, b *[5]uint64)
//go:noescape
func square(out, in *[5]uint64)
// mladder uses a Montgomery ladder to calculate (xr/zr) *= s.
func mladder(xr, zr *[5]uint64, s *[32]byte) {
var work [5][5]uint64
work[0] = *xr
setint(&work[1], 1)
setint(&work[2], 0)
work[3] = *xr
setint(&work[4], 1)
j := uint(6)
var prevbit byte
for i := 31; i >= 0; i-- {
for j < 8 {
bit := ((*s)[i] >> j) & 1
swap := bit ^ prevbit
prevbit = bit
cswap(&work[1], uint64(swap))
ladderstep(&work)
j--
}
j = 7
}
*xr = work[1]
*zr = work[2]
}
func scalarMult(out, in, base *[32]byte) {
var e [32]byte
copy(e[:], (*in)[:])
e[0] &= 248
e[31] &= 127
e[31] |= 64
var t, z [5]uint64
unpack(&t, base)
mladder(&t, &z, &e)
invert(&z, &z)
mul(&t, &t, &z)
pack(out, &t)
}
func setint(r *[5]uint64, v uint64) {
r[0] = v
r[1] = 0
r[2] = 0
r[3] = 0
r[4] = 0
}
// unpack sets r = x where r consists of 5, 51-bit limbs in little-endian
// order.
func unpack(r *[5]uint64, x *[32]byte) {
r[0] = uint64(x[0]) |
uint64(x[1])<<8 |
uint64(x[2])<<16 |
uint64(x[3])<<24 |
uint64(x[4])<<32 |
uint64(x[5])<<40 |
uint64(x[6]&7)<<48
r[1] = uint64(x[6])>>3 |
uint64(x[7])<<5 |
uint64(x[8])<<13 |
uint64(x[9])<<21 |
uint64(x[10])<<29 |
uint64(x[11])<<37 |
uint64(x[12]&63)<<45
r[2] = uint64(x[12])>>6 |
uint64(x[13])<<2 |
uint64(x[14])<<10 |
uint64(x[15])<<18 |
uint64(x[16])<<26 |
uint64(x[17])<<34 |
uint64(x[18])<<42 |
uint64(x[19]&1)<<50
r[3] = uint64(x[19])>>1 |
uint64(x[20])<<7 |
uint64(x[21])<<15 |
uint64(x[22])<<23 |
uint64(x[23])<<31 |
uint64(x[24])<<39 |
uint64(x[25]&15)<<47
r[4] = uint64(x[25])>>4 |
uint64(x[26])<<4 |
uint64(x[27])<<12 |
uint64(x[28])<<20 |
uint64(x[29])<<28 |
uint64(x[30])<<36 |
uint64(x[31]&127)<<44
}
// pack sets out = x where out is the usual, little-endian form of the 5,
// 51-bit limbs in x.
func pack(out *[32]byte, x *[5]uint64) {
t := *x
freeze(&t)
out[0] = byte(t[0])
out[1] = byte(t[0] >> 8)
out[2] = byte(t[0] >> 16)
out[3] = byte(t[0] >> 24)
out[4] = byte(t[0] >> 32)
out[5] = byte(t[0] >> 40)
out[6] = byte(t[0] >> 48)
out[6] ^= byte(t[1]<<3) & 0xf8
out[7] = byte(t[1] >> 5)
out[8] = byte(t[1] >> 13)
out[9] = byte(t[1] >> 21)
out[10] = byte(t[1] >> 29)
out[11] = byte(t[1] >> 37)
out[12] = byte(t[1] >> 45)
out[12] ^= byte(t[2]<<6) & 0xc0
out[13] = byte(t[2] >> 2)
out[14] = byte(t[2] >> 10)
out[15] = byte(t[2] >> 18)
out[16] = byte(t[2] >> 26)
out[17] = byte(t[2] >> 34)
out[18] = byte(t[2] >> 42)
out[19] = byte(t[2] >> 50)
out[19] ^= byte(t[3]<<1) & 0xfe
out[20] = byte(t[3] >> 7)
out[21] = byte(t[3] >> 15)
out[22] = byte(t[3] >> 23)
out[23] = byte(t[3] >> 31)
out[24] = byte(t[3] >> 39)
out[25] = byte(t[3] >> 47)
out[25] ^= byte(t[4]<<4) & 0xf0
out[26] = byte(t[4] >> 4)
out[27] = byte(t[4] >> 12)
out[28] = byte(t[4] >> 20)
out[29] = byte(t[4] >> 28)
out[30] = byte(t[4] >> 36)
out[31] = byte(t[4] >> 44)
}
// invert calculates r = x^-1 mod p using Fermat's little theorem.
func invert(r *[5]uint64, x *[5]uint64) {
var z2, z9, z11, z2_5_0, z2_10_0, z2_20_0, z2_50_0, z2_100_0, t [5]uint64
square(&z2, x) /* 2 */
square(&t, &z2) /* 4 */
square(&t, &t) /* 8 */
mul(&z9, &t, x) /* 9 */
mul(&z11, &z9, &z2) /* 11 */
square(&t, &z11) /* 22 */
mul(&z2_5_0, &t, &z9) /* 2^5 - 2^0 = 31 */
square(&t, &z2_5_0) /* 2^6 - 2^1 */
for i := 1; i < 5; i++ { /* 2^20 - 2^10 */
square(&t, &t)
}
mul(&z2_10_0, &t, &z2_5_0) /* 2^10 - 2^0 */
square(&t, &z2_10_0) /* 2^11 - 2^1 */
for i := 1; i < 10; i++ { /* 2^20 - 2^10 */
square(&t, &t)
}
mul(&z2_20_0, &t, &z2_10_0) /* 2^20 - 2^0 */
square(&t, &z2_20_0) /* 2^21 - 2^1 */
for i := 1; i < 20; i++ { /* 2^40 - 2^20 */
square(&t, &t)
}
mul(&t, &t, &z2_20_0) /* 2^40 - 2^0 */
square(&t, &t) /* 2^41 - 2^1 */
for i := 1; i < 10; i++ { /* 2^50 - 2^10 */
square(&t, &t)
}
mul(&z2_50_0, &t, &z2_10_0) /* 2^50 - 2^0 */
square(&t, &z2_50_0) /* 2^51 - 2^1 */
for i := 1; i < 50; i++ { /* 2^100 - 2^50 */
square(&t, &t)
}
mul(&z2_100_0, &t, &z2_50_0) /* 2^100 - 2^0 */
square(&t, &z2_100_0) /* 2^101 - 2^1 */
for i := 1; i < 100; i++ { /* 2^200 - 2^100 */
square(&t, &t)
}
mul(&t, &t, &z2_100_0) /* 2^200 - 2^0 */
square(&t, &t) /* 2^201 - 2^1 */
for i := 1; i < 50; i++ { /* 2^250 - 2^50 */
square(&t, &t)
}
mul(&t, &t, &z2_50_0) /* 2^250 - 2^0 */
square(&t, &t) /* 2^251 - 2^1 */
square(&t, &t) /* 2^252 - 2^2 */
square(&t, &t) /* 2^253 - 2^3 */
square(&t, &t) /* 2^254 - 2^4 */
square(&t, &t) /* 2^255 - 2^5 */
mul(r, &t, &z11) /* 2^255 - 21 */
}

1793
vendor/golang.org/x/crypto/curve25519/curve25519_amd64.s generated vendored Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,828 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package curve25519
import "encoding/binary"
// This code is a port of the public domain, "ref10" implementation of
// curve25519 from SUPERCOP 20130419 by D. J. Bernstein.
// fieldElement represents an element of the field GF(2^255 - 19). An element
// t, entries t[0]...t[9], represents the integer t[0]+2^26 t[1]+2^51 t[2]+2^77
// t[3]+2^102 t[4]+...+2^230 t[9]. Bounds on each t[i] vary depending on
// context.
type fieldElement [10]int32
func feZero(fe *fieldElement) {
for i := range fe {
fe[i] = 0
}
}
func feOne(fe *fieldElement) {
feZero(fe)
fe[0] = 1
}
func feAdd(dst, a, b *fieldElement) {
for i := range dst {
dst[i] = a[i] + b[i]
}
}
func feSub(dst, a, b *fieldElement) {
for i := range dst {
dst[i] = a[i] - b[i]
}
}
func feCopy(dst, src *fieldElement) {
for i := range dst {
dst[i] = src[i]
}
}
// feCSwap replaces (f,g) with (g,f) if b == 1; replaces (f,g) with (f,g) if b == 0.
//
// Preconditions: b in {0,1}.
func feCSwap(f, g *fieldElement, b int32) {
b = -b
for i := range f {
t := b & (f[i] ^ g[i])
f[i] ^= t
g[i] ^= t
}
}
// load3 reads a 24-bit, little-endian value from in.
func load3(in []byte) int64 {
var r int64
r = int64(in[0])
r |= int64(in[1]) << 8
r |= int64(in[2]) << 16
return r
}
// load4 reads a 32-bit, little-endian value from in.
func load4(in []byte) int64 {
return int64(binary.LittleEndian.Uint32(in))
}
func feFromBytes(dst *fieldElement, src *[32]byte) {
h0 := load4(src[:])
h1 := load3(src[4:]) << 6
h2 := load3(src[7:]) << 5
h3 := load3(src[10:]) << 3
h4 := load3(src[13:]) << 2
h5 := load4(src[16:])
h6 := load3(src[20:]) << 7
h7 := load3(src[23:]) << 5
h8 := load3(src[26:]) << 4
h9 := (load3(src[29:]) & 0x7fffff) << 2
var carry [10]int64
carry[9] = (h9 + 1<<24) >> 25
h0 += carry[9] * 19
h9 -= carry[9] << 25
carry[1] = (h1 + 1<<24) >> 25
h2 += carry[1]
h1 -= carry[1] << 25
carry[3] = (h3 + 1<<24) >> 25
h4 += carry[3]
h3 -= carry[3] << 25
carry[5] = (h5 + 1<<24) >> 25
h6 += carry[5]
h5 -= carry[5] << 25
carry[7] = (h7 + 1<<24) >> 25
h8 += carry[7]
h7 -= carry[7] << 25
carry[0] = (h0 + 1<<25) >> 26
h1 += carry[0]
h0 -= carry[0] << 26
carry[2] = (h2 + 1<<25) >> 26
h3 += carry[2]
h2 -= carry[2] << 26
carry[4] = (h4 + 1<<25) >> 26
h5 += carry[4]
h4 -= carry[4] << 26
carry[6] = (h6 + 1<<25) >> 26
h7 += carry[6]
h6 -= carry[6] << 26
carry[8] = (h8 + 1<<25) >> 26
h9 += carry[8]
h8 -= carry[8] << 26
dst[0] = int32(h0)
dst[1] = int32(h1)
dst[2] = int32(h2)
dst[3] = int32(h3)
dst[4] = int32(h4)
dst[5] = int32(h5)
dst[6] = int32(h6)
dst[7] = int32(h7)
dst[8] = int32(h8)
dst[9] = int32(h9)
}
// feToBytes marshals h to s.
// Preconditions:
// |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
//
// Write p=2^255-19; q=floor(h/p).
// Basic claim: q = floor(2^(-255)(h + 19 2^(-25)h9 + 2^(-1))).
//
// Proof:
// Have |h|<=p so |q|<=1 so |19^2 2^(-255) q|<1/4.
// Also have |h-2^230 h9|<2^230 so |19 2^(-255)(h-2^230 h9)|<1/4.
//
// Write y=2^(-1)-19^2 2^(-255)q-19 2^(-255)(h-2^230 h9).
// Then 0<y<1.
//
// Write r=h-pq.
// Have 0<=r<=p-1=2^255-20.
// Thus 0<=r+19(2^-255)r<r+19(2^-255)2^255<=2^255-1.
//
// Write x=r+19(2^-255)r+y.
// Then 0<x<2^255 so floor(2^(-255)x) = 0 so floor(q+2^(-255)x) = q.
//
// Have q+2^(-255)x = 2^(-255)(h + 19 2^(-25) h9 + 2^(-1))
// so floor(2^(-255)(h + 19 2^(-25) h9 + 2^(-1))) = q.
func feToBytes(s *[32]byte, h *fieldElement) {
var carry [10]int32
q := (19*h[9] + (1 << 24)) >> 25
q = (h[0] + q) >> 26
q = (h[1] + q) >> 25
q = (h[2] + q) >> 26
q = (h[3] + q) >> 25
q = (h[4] + q) >> 26
q = (h[5] + q) >> 25
q = (h[6] + q) >> 26
q = (h[7] + q) >> 25
q = (h[8] + q) >> 26
q = (h[9] + q) >> 25
// Goal: Output h-(2^255-19)q, which is between 0 and 2^255-20.
h[0] += 19 * q
// Goal: Output h-2^255 q, which is between 0 and 2^255-20.
carry[0] = h[0] >> 26
h[1] += carry[0]
h[0] -= carry[0] << 26
carry[1] = h[1] >> 25
h[2] += carry[1]
h[1] -= carry[1] << 25
carry[2] = h[2] >> 26
h[3] += carry[2]
h[2] -= carry[2] << 26
carry[3] = h[3] >> 25
h[4] += carry[3]
h[3] -= carry[3] << 25
carry[4] = h[4] >> 26
h[5] += carry[4]
h[4] -= carry[4] << 26
carry[5] = h[5] >> 25
h[6] += carry[5]
h[5] -= carry[5] << 25
carry[6] = h[6] >> 26
h[7] += carry[6]
h[6] -= carry[6] << 26
carry[7] = h[7] >> 25
h[8] += carry[7]
h[7] -= carry[7] << 25
carry[8] = h[8] >> 26
h[9] += carry[8]
h[8] -= carry[8] << 26
carry[9] = h[9] >> 25
h[9] -= carry[9] << 25
// h10 = carry9
// Goal: Output h[0]+...+2^255 h10-2^255 q, which is between 0 and 2^255-20.
// Have h[0]+...+2^230 h[9] between 0 and 2^255-1;
// evidently 2^255 h10-2^255 q = 0.
// Goal: Output h[0]+...+2^230 h[9].
s[0] = byte(h[0] >> 0)
s[1] = byte(h[0] >> 8)
s[2] = byte(h[0] >> 16)
s[3] = byte((h[0] >> 24) | (h[1] << 2))
s[4] = byte(h[1] >> 6)
s[5] = byte(h[1] >> 14)
s[6] = byte((h[1] >> 22) | (h[2] << 3))
s[7] = byte(h[2] >> 5)
s[8] = byte(h[2] >> 13)
s[9] = byte((h[2] >> 21) | (h[3] << 5))
s[10] = byte(h[3] >> 3)
s[11] = byte(h[3] >> 11)
s[12] = byte((h[3] >> 19) | (h[4] << 6))
s[13] = byte(h[4] >> 2)
s[14] = byte(h[4] >> 10)
s[15] = byte(h[4] >> 18)
s[16] = byte(h[5] >> 0)
s[17] = byte(h[5] >> 8)
s[18] = byte(h[5] >> 16)
s[19] = byte((h[5] >> 24) | (h[6] << 1))
s[20] = byte(h[6] >> 7)
s[21] = byte(h[6] >> 15)
s[22] = byte((h[6] >> 23) | (h[7] << 3))
s[23] = byte(h[7] >> 5)
s[24] = byte(h[7] >> 13)
s[25] = byte((h[7] >> 21) | (h[8] << 4))
s[26] = byte(h[8] >> 4)
s[27] = byte(h[8] >> 12)
s[28] = byte((h[8] >> 20) | (h[9] << 6))
s[29] = byte(h[9] >> 2)
s[30] = byte(h[9] >> 10)
s[31] = byte(h[9] >> 18)
}
// feMul calculates h = f * g
// Can overlap h with f or g.
//
// Preconditions:
// |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
// |g| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
//
// Postconditions:
// |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
//
// Notes on implementation strategy:
//
// Using schoolbook multiplication.
// Karatsuba would save a little in some cost models.
//
// Most multiplications by 2 and 19 are 32-bit precomputations;
// cheaper than 64-bit postcomputations.
//
// There is one remaining multiplication by 19 in the carry chain;
// one *19 precomputation can be merged into this,
// but the resulting data flow is considerably less clean.
//
// There are 12 carries below.
// 10 of them are 2-way parallelizable and vectorizable.
// Can get away with 11 carries, but then data flow is much deeper.
//
// With tighter constraints on inputs can squeeze carries into int32.
func feMul(h, f, g *fieldElement) {
f0 := f[0]
f1 := f[1]
f2 := f[2]
f3 := f[3]
f4 := f[4]
f5 := f[5]
f6 := f[6]
f7 := f[7]
f8 := f[8]
f9 := f[9]
g0 := g[0]
g1 := g[1]
g2 := g[2]
g3 := g[3]
g4 := g[4]
g5 := g[5]
g6 := g[6]
g7 := g[7]
g8 := g[8]
g9 := g[9]
g1_19 := 19 * g1 // 1.4*2^29
g2_19 := 19 * g2 // 1.4*2^30; still ok
g3_19 := 19 * g3
g4_19 := 19 * g4
g5_19 := 19 * g5
g6_19 := 19 * g6
g7_19 := 19 * g7
g8_19 := 19 * g8
g9_19 := 19 * g9
f1_2 := 2 * f1
f3_2 := 2 * f3
f5_2 := 2 * f5
f7_2 := 2 * f7
f9_2 := 2 * f9
f0g0 := int64(f0) * int64(g0)
f0g1 := int64(f0) * int64(g1)
f0g2 := int64(f0) * int64(g2)
f0g3 := int64(f0) * int64(g3)
f0g4 := int64(f0) * int64(g4)
f0g5 := int64(f0) * int64(g5)
f0g6 := int64(f0) * int64(g6)
f0g7 := int64(f0) * int64(g7)
f0g8 := int64(f0) * int64(g8)
f0g9 := int64(f0) * int64(g9)
f1g0 := int64(f1) * int64(g0)
f1g1_2 := int64(f1_2) * int64(g1)
f1g2 := int64(f1) * int64(g2)
f1g3_2 := int64(f1_2) * int64(g3)
f1g4 := int64(f1) * int64(g4)
f1g5_2 := int64(f1_2) * int64(g5)
f1g6 := int64(f1) * int64(g6)
f1g7_2 := int64(f1_2) * int64(g7)
f1g8 := int64(f1) * int64(g8)
f1g9_38 := int64(f1_2) * int64(g9_19)
f2g0 := int64(f2) * int64(g0)
f2g1 := int64(f2) * int64(g1)
f2g2 := int64(f2) * int64(g2)
f2g3 := int64(f2) * int64(g3)
f2g4 := int64(f2) * int64(g4)
f2g5 := int64(f2) * int64(g5)
f2g6 := int64(f2) * int64(g6)
f2g7 := int64(f2) * int64(g7)
f2g8_19 := int64(f2) * int64(g8_19)
f2g9_19 := int64(f2) * int64(g9_19)
f3g0 := int64(f3) * int64(g0)
f3g1_2 := int64(f3_2) * int64(g1)
f3g2 := int64(f3) * int64(g2)
f3g3_2 := int64(f3_2) * int64(g3)
f3g4 := int64(f3) * int64(g4)
f3g5_2 := int64(f3_2) * int64(g5)
f3g6 := int64(f3) * int64(g6)
f3g7_38 := int64(f3_2) * int64(g7_19)
f3g8_19 := int64(f3) * int64(g8_19)
f3g9_38 := int64(f3_2) * int64(g9_19)
f4g0 := int64(f4) * int64(g0)
f4g1 := int64(f4) * int64(g1)
f4g2 := int64(f4) * int64(g2)
f4g3 := int64(f4) * int64(g3)
f4g4 := int64(f4) * int64(g4)
f4g5 := int64(f4) * int64(g5)
f4g6_19 := int64(f4) * int64(g6_19)
f4g7_19 := int64(f4) * int64(g7_19)
f4g8_19 := int64(f4) * int64(g8_19)
f4g9_19 := int64(f4) * int64(g9_19)
f5g0 := int64(f5) * int64(g0)
f5g1_2 := int64(f5_2) * int64(g1)
f5g2 := int64(f5) * int64(g2)
f5g3_2 := int64(f5_2) * int64(g3)
f5g4 := int64(f5) * int64(g4)
f5g5_38 := int64(f5_2) * int64(g5_19)
f5g6_19 := int64(f5) * int64(g6_19)
f5g7_38 := int64(f5_2) * int64(g7_19)
f5g8_19 := int64(f5) * int64(g8_19)
f5g9_38 := int64(f5_2) * int64(g9_19)
f6g0 := int64(f6) * int64(g0)
f6g1 := int64(f6) * int64(g1)
f6g2 := int64(f6) * int64(g2)
f6g3 := int64(f6) * int64(g3)
f6g4_19 := int64(f6) * int64(g4_19)
f6g5_19 := int64(f6) * int64(g5_19)
f6g6_19 := int64(f6) * int64(g6_19)
f6g7_19 := int64(f6) * int64(g7_19)
f6g8_19 := int64(f6) * int64(g8_19)
f6g9_19 := int64(f6) * int64(g9_19)
f7g0 := int64(f7) * int64(g0)
f7g1_2 := int64(f7_2) * int64(g1)
f7g2 := int64(f7) * int64(g2)
f7g3_38 := int64(f7_2) * int64(g3_19)
f7g4_19 := int64(f7) * int64(g4_19)
f7g5_38 := int64(f7_2) * int64(g5_19)
f7g6_19 := int64(f7) * int64(g6_19)
f7g7_38 := int64(f7_2) * int64(g7_19)
f7g8_19 := int64(f7) * int64(g8_19)
f7g9_38 := int64(f7_2) * int64(g9_19)
f8g0 := int64(f8) * int64(g0)
f8g1 := int64(f8) * int64(g1)
f8g2_19 := int64(f8) * int64(g2_19)
f8g3_19 := int64(f8) * int64(g3_19)
f8g4_19 := int64(f8) * int64(g4_19)
f8g5_19 := int64(f8) * int64(g5_19)
f8g6_19 := int64(f8) * int64(g6_19)
f8g7_19 := int64(f8) * int64(g7_19)
f8g8_19 := int64(f8) * int64(g8_19)
f8g9_19 := int64(f8) * int64(g9_19)
f9g0 := int64(f9) * int64(g0)
f9g1_38 := int64(f9_2) * int64(g1_19)
f9g2_19 := int64(f9) * int64(g2_19)
f9g3_38 := int64(f9_2) * int64(g3_19)
f9g4_19 := int64(f9) * int64(g4_19)
f9g5_38 := int64(f9_2) * int64(g5_19)
f9g6_19 := int64(f9) * int64(g6_19)
f9g7_38 := int64(f9_2) * int64(g7_19)
f9g8_19 := int64(f9) * int64(g8_19)
f9g9_38 := int64(f9_2) * int64(g9_19)
h0 := f0g0 + f1g9_38 + f2g8_19 + f3g7_38 + f4g6_19 + f5g5_38 + f6g4_19 + f7g3_38 + f8g2_19 + f9g1_38
h1 := f0g1 + f1g0 + f2g9_19 + f3g8_19 + f4g7_19 + f5g6_19 + f6g5_19 + f7g4_19 + f8g3_19 + f9g2_19
h2 := f0g2 + f1g1_2 + f2g0 + f3g9_38 + f4g8_19 + f5g7_38 + f6g6_19 + f7g5_38 + f8g4_19 + f9g3_38
h3 := f0g3 + f1g2 + f2g1 + f3g0 + f4g9_19 + f5g8_19 + f6g7_19 + f7g6_19 + f8g5_19 + f9g4_19
h4 := f0g4 + f1g3_2 + f2g2 + f3g1_2 + f4g0 + f5g9_38 + f6g8_19 + f7g7_38 + f8g6_19 + f9g5_38
h5 := f0g5 + f1g4 + f2g3 + f3g2 + f4g1 + f5g0 + f6g9_19 + f7g8_19 + f8g7_19 + f9g6_19
h6 := f0g6 + f1g5_2 + f2g4 + f3g3_2 + f4g2 + f5g1_2 + f6g0 + f7g9_38 + f8g8_19 + f9g7_38
h7 := f0g7 + f1g6 + f2g5 + f3g4 + f4g3 + f5g2 + f6g1 + f7g0 + f8g9_19 + f9g8_19
h8 := f0g8 + f1g7_2 + f2g6 + f3g5_2 + f4g4 + f5g3_2 + f6g2 + f7g1_2 + f8g0 + f9g9_38
h9 := f0g9 + f1g8 + f2g7 + f3g6 + f4g5 + f5g4 + f6g3 + f7g2 + f8g1 + f9g0
var carry [10]int64
// |h0| <= (1.1*1.1*2^52*(1+19+19+19+19)+1.1*1.1*2^50*(38+38+38+38+38))
// i.e. |h0| <= 1.2*2^59; narrower ranges for h2, h4, h6, h8
// |h1| <= (1.1*1.1*2^51*(1+1+19+19+19+19+19+19+19+19))
// i.e. |h1| <= 1.5*2^58; narrower ranges for h3, h5, h7, h9
carry[0] = (h0 + (1 << 25)) >> 26
h1 += carry[0]
h0 -= carry[0] << 26
carry[4] = (h4 + (1 << 25)) >> 26
h5 += carry[4]
h4 -= carry[4] << 26
// |h0| <= 2^25
// |h4| <= 2^25
// |h1| <= 1.51*2^58
// |h5| <= 1.51*2^58
carry[1] = (h1 + (1 << 24)) >> 25
h2 += carry[1]
h1 -= carry[1] << 25
carry[5] = (h5 + (1 << 24)) >> 25
h6 += carry[5]
h5 -= carry[5] << 25
// |h1| <= 2^24; from now on fits into int32
// |h5| <= 2^24; from now on fits into int32
// |h2| <= 1.21*2^59
// |h6| <= 1.21*2^59
carry[2] = (h2 + (1 << 25)) >> 26
h3 += carry[2]
h2 -= carry[2] << 26
carry[6] = (h6 + (1 << 25)) >> 26
h7 += carry[6]
h6 -= carry[6] << 26
// |h2| <= 2^25; from now on fits into int32 unchanged
// |h6| <= 2^25; from now on fits into int32 unchanged
// |h3| <= 1.51*2^58
// |h7| <= 1.51*2^58
carry[3] = (h3 + (1 << 24)) >> 25
h4 += carry[3]
h3 -= carry[3] << 25
carry[7] = (h7 + (1 << 24)) >> 25
h8 += carry[7]
h7 -= carry[7] << 25
// |h3| <= 2^24; from now on fits into int32 unchanged
// |h7| <= 2^24; from now on fits into int32 unchanged
// |h4| <= 1.52*2^33
// |h8| <= 1.52*2^33
carry[4] = (h4 + (1 << 25)) >> 26
h5 += carry[4]
h4 -= carry[4] << 26
carry[8] = (h8 + (1 << 25)) >> 26
h9 += carry[8]
h8 -= carry[8] << 26
// |h4| <= 2^25; from now on fits into int32 unchanged
// |h8| <= 2^25; from now on fits into int32 unchanged
// |h5| <= 1.01*2^24
// |h9| <= 1.51*2^58
carry[9] = (h9 + (1 << 24)) >> 25
h0 += carry[9] * 19
h9 -= carry[9] << 25
// |h9| <= 2^24; from now on fits into int32 unchanged
// |h0| <= 1.8*2^37
carry[0] = (h0 + (1 << 25)) >> 26
h1 += carry[0]
h0 -= carry[0] << 26
// |h0| <= 2^25; from now on fits into int32 unchanged
// |h1| <= 1.01*2^24
h[0] = int32(h0)
h[1] = int32(h1)
h[2] = int32(h2)
h[3] = int32(h3)
h[4] = int32(h4)
h[5] = int32(h5)
h[6] = int32(h6)
h[7] = int32(h7)
h[8] = int32(h8)
h[9] = int32(h9)
}
// feSquare calculates h = f*f. Can overlap h with f.
//
// Preconditions:
// |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
//
// Postconditions:
// |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
func feSquare(h, f *fieldElement) {
f0 := f[0]
f1 := f[1]
f2 := f[2]
f3 := f[3]
f4 := f[4]
f5 := f[5]
f6 := f[6]
f7 := f[7]
f8 := f[8]
f9 := f[9]
f0_2 := 2 * f0
f1_2 := 2 * f1
f2_2 := 2 * f2
f3_2 := 2 * f3
f4_2 := 2 * f4
f5_2 := 2 * f5
f6_2 := 2 * f6
f7_2 := 2 * f7
f5_38 := 38 * f5 // 1.31*2^30
f6_19 := 19 * f6 // 1.31*2^30
f7_38 := 38 * f7 // 1.31*2^30
f8_19 := 19 * f8 // 1.31*2^30
f9_38 := 38 * f9 // 1.31*2^30
f0f0 := int64(f0) * int64(f0)
f0f1_2 := int64(f0_2) * int64(f1)
f0f2_2 := int64(f0_2) * int64(f2)
f0f3_2 := int64(f0_2) * int64(f3)
f0f4_2 := int64(f0_2) * int64(f4)
f0f5_2 := int64(f0_2) * int64(f5)
f0f6_2 := int64(f0_2) * int64(f6)
f0f7_2 := int64(f0_2) * int64(f7)
f0f8_2 := int64(f0_2) * int64(f8)
f0f9_2 := int64(f0_2) * int64(f9)
f1f1_2 := int64(f1_2) * int64(f1)
f1f2_2 := int64(f1_2) * int64(f2)
f1f3_4 := int64(f1_2) * int64(f3_2)
f1f4_2 := int64(f1_2) * int64(f4)
f1f5_4 := int64(f1_2) * int64(f5_2)
f1f6_2 := int64(f1_2) * int64(f6)
f1f7_4 := int64(f1_2) * int64(f7_2)
f1f8_2 := int64(f1_2) * int64(f8)
f1f9_76 := int64(f1_2) * int64(f9_38)
f2f2 := int64(f2) * int64(f2)
f2f3_2 := int64(f2_2) * int64(f3)
f2f4_2 := int64(f2_2) * int64(f4)
f2f5_2 := int64(f2_2) * int64(f5)
f2f6_2 := int64(f2_2) * int64(f6)
f2f7_2 := int64(f2_2) * int64(f7)
f2f8_38 := int64(f2_2) * int64(f8_19)
f2f9_38 := int64(f2) * int64(f9_38)
f3f3_2 := int64(f3_2) * int64(f3)
f3f4_2 := int64(f3_2) * int64(f4)
f3f5_4 := int64(f3_2) * int64(f5_2)
f3f6_2 := int64(f3_2) * int64(f6)
f3f7_76 := int64(f3_2) * int64(f7_38)
f3f8_38 := int64(f3_2) * int64(f8_19)
f3f9_76 := int64(f3_2) * int64(f9_38)
f4f4 := int64(f4) * int64(f4)
f4f5_2 := int64(f4_2) * int64(f5)
f4f6_38 := int64(f4_2) * int64(f6_19)
f4f7_38 := int64(f4) * int64(f7_38)
f4f8_38 := int64(f4_2) * int64(f8_19)
f4f9_38 := int64(f4) * int64(f9_38)
f5f5_38 := int64(f5) * int64(f5_38)
f5f6_38 := int64(f5_2) * int64(f6_19)
f5f7_76 := int64(f5_2) * int64(f7_38)
f5f8_38 := int64(f5_2) * int64(f8_19)
f5f9_76 := int64(f5_2) * int64(f9_38)
f6f6_19 := int64(f6) * int64(f6_19)
f6f7_38 := int64(f6) * int64(f7_38)
f6f8_38 := int64(f6_2) * int64(f8_19)
f6f9_38 := int64(f6) * int64(f9_38)
f7f7_38 := int64(f7) * int64(f7_38)
f7f8_38 := int64(f7_2) * int64(f8_19)
f7f9_76 := int64(f7_2) * int64(f9_38)
f8f8_19 := int64(f8) * int64(f8_19)
f8f9_38 := int64(f8) * int64(f9_38)
f9f9_38 := int64(f9) * int64(f9_38)
h0 := f0f0 + f1f9_76 + f2f8_38 + f3f7_76 + f4f6_38 + f5f5_38
h1 := f0f1_2 + f2f9_38 + f3f8_38 + f4f7_38 + f5f6_38
h2 := f0f2_2 + f1f1_2 + f3f9_76 + f4f8_38 + f5f7_76 + f6f6_19
h3 := f0f3_2 + f1f2_2 + f4f9_38 + f5f8_38 + f6f7_38
h4 := f0f4_2 + f1f3_4 + f2f2 + f5f9_76 + f6f8_38 + f7f7_38
h5 := f0f5_2 + f1f4_2 + f2f3_2 + f6f9_38 + f7f8_38
h6 := f0f6_2 + f1f5_4 + f2f4_2 + f3f3_2 + f7f9_76 + f8f8_19
h7 := f0f7_2 + f1f6_2 + f2f5_2 + f3f4_2 + f8f9_38
h8 := f0f8_2 + f1f7_4 + f2f6_2 + f3f5_4 + f4f4 + f9f9_38
h9 := f0f9_2 + f1f8_2 + f2f7_2 + f3f6_2 + f4f5_2
var carry [10]int64
carry[0] = (h0 + (1 << 25)) >> 26
h1 += carry[0]
h0 -= carry[0] << 26
carry[4] = (h4 + (1 << 25)) >> 26
h5 += carry[4]
h4 -= carry[4] << 26
carry[1] = (h1 + (1 << 24)) >> 25
h2 += carry[1]
h1 -= carry[1] << 25
carry[5] = (h5 + (1 << 24)) >> 25
h6 += carry[5]
h5 -= carry[5] << 25
carry[2] = (h2 + (1 << 25)) >> 26
h3 += carry[2]
h2 -= carry[2] << 26
carry[6] = (h6 + (1 << 25)) >> 26
h7 += carry[6]
h6 -= carry[6] << 26
carry[3] = (h3 + (1 << 24)) >> 25
h4 += carry[3]
h3 -= carry[3] << 25
carry[7] = (h7 + (1 << 24)) >> 25
h8 += carry[7]
h7 -= carry[7] << 25
carry[4] = (h4 + (1 << 25)) >> 26
h5 += carry[4]
h4 -= carry[4] << 26
carry[8] = (h8 + (1 << 25)) >> 26
h9 += carry[8]
h8 -= carry[8] << 26
carry[9] = (h9 + (1 << 24)) >> 25
h0 += carry[9] * 19
h9 -= carry[9] << 25
carry[0] = (h0 + (1 << 25)) >> 26
h1 += carry[0]
h0 -= carry[0] << 26
h[0] = int32(h0)
h[1] = int32(h1)
h[2] = int32(h2)
h[3] = int32(h3)
h[4] = int32(h4)
h[5] = int32(h5)
h[6] = int32(h6)
h[7] = int32(h7)
h[8] = int32(h8)
h[9] = int32(h9)
}
// feMul121666 calculates h = f * 121666. Can overlap h with f.
//
// Preconditions:
// |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
//
// Postconditions:
// |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
func feMul121666(h, f *fieldElement) {
h0 := int64(f[0]) * 121666
h1 := int64(f[1]) * 121666
h2 := int64(f[2]) * 121666
h3 := int64(f[3]) * 121666
h4 := int64(f[4]) * 121666
h5 := int64(f[5]) * 121666
h6 := int64(f[6]) * 121666
h7 := int64(f[7]) * 121666
h8 := int64(f[8]) * 121666
h9 := int64(f[9]) * 121666
var carry [10]int64
carry[9] = (h9 + (1 << 24)) >> 25
h0 += carry[9] * 19
h9 -= carry[9] << 25
carry[1] = (h1 + (1 << 24)) >> 25
h2 += carry[1]
h1 -= carry[1] << 25
carry[3] = (h3 + (1 << 24)) >> 25
h4 += carry[3]
h3 -= carry[3] << 25
carry[5] = (h5 + (1 << 24)) >> 25
h6 += carry[5]
h5 -= carry[5] << 25
carry[7] = (h7 + (1 << 24)) >> 25
h8 += carry[7]
h7 -= carry[7] << 25
carry[0] = (h0 + (1 << 25)) >> 26
h1 += carry[0]
h0 -= carry[0] << 26
carry[2] = (h2 + (1 << 25)) >> 26
h3 += carry[2]
h2 -= carry[2] << 26
carry[4] = (h4 + (1 << 25)) >> 26
h5 += carry[4]
h4 -= carry[4] << 26
carry[6] = (h6 + (1 << 25)) >> 26
h7 += carry[6]
h6 -= carry[6] << 26
carry[8] = (h8 + (1 << 25)) >> 26
h9 += carry[8]
h8 -= carry[8] << 26
h[0] = int32(h0)
h[1] = int32(h1)
h[2] = int32(h2)
h[3] = int32(h3)
h[4] = int32(h4)
h[5] = int32(h5)
h[6] = int32(h6)
h[7] = int32(h7)
h[8] = int32(h8)
h[9] = int32(h9)
}
// feInvert sets out = z^-1.
func feInvert(out, z *fieldElement) {
var t0, t1, t2, t3 fieldElement
var i int
feSquare(&t0, z)
for i = 1; i < 1; i++ {
feSquare(&t0, &t0)
}
feSquare(&t1, &t0)
for i = 1; i < 2; i++ {
feSquare(&t1, &t1)
}
feMul(&t1, z, &t1)
feMul(&t0, &t0, &t1)
feSquare(&t2, &t0)
for i = 1; i < 1; i++ {
feSquare(&t2, &t2)
}
feMul(&t1, &t1, &t2)
feSquare(&t2, &t1)
for i = 1; i < 5; i++ {
feSquare(&t2, &t2)
}
feMul(&t1, &t2, &t1)
feSquare(&t2, &t1)
for i = 1; i < 10; i++ {
feSquare(&t2, &t2)
}
feMul(&t2, &t2, &t1)
feSquare(&t3, &t2)
for i = 1; i < 20; i++ {
feSquare(&t3, &t3)
}
feMul(&t2, &t3, &t2)
feSquare(&t2, &t2)
for i = 1; i < 10; i++ {
feSquare(&t2, &t2)
}
feMul(&t1, &t2, &t1)
feSquare(&t2, &t1)
for i = 1; i < 50; i++ {
feSquare(&t2, &t2)
}
feMul(&t2, &t2, &t1)
feSquare(&t3, &t2)
for i = 1; i < 100; i++ {
feSquare(&t3, &t3)
}
feMul(&t2, &t3, &t2)
feSquare(&t2, &t2)
for i = 1; i < 50; i++ {
feSquare(&t2, &t2)
}
feMul(&t1, &t2, &t1)
feSquare(&t1, &t1)
for i = 1; i < 5; i++ {
feSquare(&t1, &t1)
}
feMul(out, &t1, &t0)
}
func scalarMultGeneric(out, in, base *[32]byte) {
var e [32]byte
copy(e[:], in[:])
e[0] &= 248
e[31] &= 127
e[31] |= 64
var x1, x2, z2, x3, z3, tmp0, tmp1 fieldElement
feFromBytes(&x1, base)
feOne(&x2)
feCopy(&x3, &x1)
feOne(&z3)
swap := int32(0)
for pos := 254; pos >= 0; pos-- {
b := e[pos/8] >> uint(pos&7)
b &= 1
swap ^= int32(b)
feCSwap(&x2, &x3, swap)
feCSwap(&z2, &z3, swap)
swap = int32(b)
feSub(&tmp0, &x3, &z3)
feSub(&tmp1, &x2, &z2)
feAdd(&x2, &x2, &z2)
feAdd(&z2, &x3, &z3)
feMul(&z3, &tmp0, &x2)
feMul(&z2, &z2, &tmp1)
feSquare(&tmp0, &tmp1)
feSquare(&tmp1, &x2)
feAdd(&x3, &z3, &z2)
feSub(&z2, &z3, &z2)
feMul(&x2, &tmp1, &tmp0)
feSub(&tmp1, &tmp1, &tmp0)
feSquare(&z2, &z2)
feMul121666(&z3, &tmp1)
feSquare(&x3, &x3)
feAdd(&tmp0, &tmp0, &z3)
feMul(&z3, &x1, &z2)
feMul(&z2, &tmp1, &tmp0)
}
feCSwap(&x2, &x3, swap)
feCSwap(&z2, &z3, swap)
feInvert(&z2, &z2)
feMul(&x2, &x2, &z2)
feToBytes(out, &x2)
}

View File

@@ -0,0 +1,11 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !amd64 gccgo appengine purego
package curve25519
func scalarMult(out, in, base *[32]byte) {
scalarMultGeneric(out, in, base)
}

View File

@@ -0,0 +1,110 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package curve25519
import (
"bytes"
"crypto/rand"
"fmt"
"testing"
)
const expectedHex = "89161fde887b2b53de549af483940106ecc114d6982daa98256de23bdf77661a"
func TestX25519Basepoint(t *testing.T) {
x := make([]byte, 32)
x[0] = 1
for i := 0; i < 200; i++ {
var err error
x, err = X25519(x, Basepoint)
if err != nil {
t.Fatal(err)
}
}
result := fmt.Sprintf("%x", x)
if result != expectedHex {
t.Errorf("incorrect result: got %s, want %s", result, expectedHex)
}
}
func TestLowOrderPoints(t *testing.T) {
scalar := make([]byte, ScalarSize)
if _, err := rand.Read(scalar); err != nil {
t.Fatal(err)
}
for i, p := range lowOrderPoints {
out, err := X25519(scalar, p)
if err == nil {
t.Errorf("%d: expected error, got nil", i)
}
if out != nil {
t.Errorf("%d: expected nil output, got %x", i, out)
}
}
}
func TestTestVectors(t *testing.T) {
t.Run("Generic", func(t *testing.T) { testTestVectors(t, scalarMultGeneric) })
t.Run("Native", func(t *testing.T) { testTestVectors(t, ScalarMult) })
t.Run("X25519", func(t *testing.T) {
testTestVectors(t, func(dst, scalar, point *[32]byte) {
out, err := X25519(scalar[:], point[:])
if err != nil {
t.Fatal(err)
}
copy(dst[:], out)
})
})
}
func testTestVectors(t *testing.T, scalarMult func(dst, scalar, point *[32]byte)) {
for _, tv := range testVectors {
var got [32]byte
scalarMult(&got, &tv.In, &tv.Base)
if !bytes.Equal(got[:], tv.Expect[:]) {
t.Logf(" in = %x", tv.In)
t.Logf(" base = %x", tv.Base)
t.Logf(" got = %x", got)
t.Logf("expect = %x", tv.Expect)
t.Fail()
}
}
}
// TestHighBitIgnored tests the following requirement in RFC 7748:
//
// When receiving such an array, implementations of X25519 (but not X448) MUST
// mask the most significant bit in the final byte.
//
// Regression test for issue #30095.
func TestHighBitIgnored(t *testing.T) {
var s, u [32]byte
rand.Read(s[:])
rand.Read(u[:])
var hi0, hi1 [32]byte
u[31] &= 0x7f
ScalarMult(&hi0, &s, &u)
u[31] |= 0x80
ScalarMult(&hi1, &s, &u)
if !bytes.Equal(hi0[:], hi1[:]) {
t.Errorf("high bit of group point should not affect result")
}
}
func BenchmarkScalarBaseMult(b *testing.B) {
var in, out [32]byte
in[0] = 1
b.SetBytes(32)
for i := 0; i < b.N; i++ {
ScalarBaseMult(&out, &in)
}
}

105
vendor/golang.org/x/crypto/curve25519/vectors_test.go generated vendored Normal file
View File

@@ -0,0 +1,105 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package curve25519
// lowOrderPoints from libsodium.
// https://github.com/jedisct1/libsodium/blob/65621a1059a37d/src/libsodium/crypto_scalarmult/curve25519/ref10/x25519_ref10.c#L11-L70
var lowOrderPoints = [][]byte{
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
{0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
{0xe0, 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae, 0x16, 0x56, 0xe3, 0xfa, 0xf1, 0x9f, 0xc4, 0x6a, 0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32, 0xb1, 0xfd, 0x86, 0x62, 0x05, 0x16, 0x5f, 0x49, 0xb8, 0x00},
{0x5f, 0x9c, 0x95, 0xbc, 0xa3, 0x50, 0x8c, 0x24, 0xb1, 0xd0, 0xb1, 0x55, 0x9c, 0x83, 0xef, 0x5b, 0x04, 0x44, 0x5c, 0xc4, 0x58, 0x1c, 0x8e, 0x86, 0xd8, 0x22, 0x4e, 0xdd, 0xd0, 0x9f, 0x11, 0x57},
{0xec, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f},
{0xed, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f},
{0xee, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f},
}
// testVectors generated with BoringSSL.
var testVectors = []struct {
In [32]byte
Base [32]byte
Expect [32]byte
}{
{
In: [32]byte{0x66, 0x8f, 0xb9, 0xf7, 0x6a, 0xd9, 0x71, 0xc8, 0x1a, 0xc9, 0x0, 0x7, 0x1a, 0x15, 0x60, 0xbc, 0xe2, 0xca, 0x0, 0xca, 0xc7, 0xe6, 0x7a, 0xf9, 0x93, 0x48, 0x91, 0x37, 0x61, 0x43, 0x40, 0x14},
Base: [32]byte{0xdb, 0x5f, 0x32, 0xb7, 0xf8, 0x41, 0xe7, 0xa1, 0xa0, 0x9, 0x68, 0xef, 0xfd, 0xed, 0x12, 0x73, 0x5f, 0xc4, 0x7a, 0x3e, 0xb1, 0x3b, 0x57, 0x9a, 0xac, 0xad, 0xea, 0xe8, 0x9, 0x39, 0xa7, 0xdd},
Expect: [32]byte{0x9, 0xd, 0x85, 0xe5, 0x99, 0xea, 0x8e, 0x2b, 0xee, 0xb6, 0x13, 0x4, 0xd3, 0x7b, 0xe1, 0xe, 0xc5, 0xc9, 0x5, 0xf9, 0x92, 0x7d, 0x32, 0xf4, 0x2a, 0x9a, 0xa, 0xfb, 0x3e, 0xb, 0x40, 0x74},
},
{
In: [32]byte{0x63, 0x66, 0x95, 0xe3, 0x4f, 0x75, 0xb9, 0xa2, 0x79, 0xc8, 0x70, 0x6f, 0xad, 0x12, 0x89, 0xf2, 0xc0, 0xb1, 0xe2, 0x2e, 0x16, 0xf8, 0xb8, 0x86, 0x17, 0x29, 0xc1, 0xa, 0x58, 0x29, 0x58, 0xaf},
Base: [32]byte{0x9, 0xd, 0x7, 0x1, 0xf8, 0xfd, 0xe2, 0x8f, 0x70, 0x4, 0x3b, 0x83, 0xf2, 0x34, 0x62, 0x25, 0x41, 0x9b, 0x18, 0xa7, 0xf2, 0x7e, 0x9e, 0x3d, 0x2b, 0xfd, 0x4, 0xe1, 0xf, 0x3d, 0x21, 0x3e},
Expect: [32]byte{0xbf, 0x26, 0xec, 0x7e, 0xc4, 0x13, 0x6, 0x17, 0x33, 0xd4, 0x40, 0x70, 0xea, 0x67, 0xca, 0xb0, 0x2a, 0x85, 0xdc, 0x1b, 0xe8, 0xcf, 0xe1, 0xff, 0x73, 0xd5, 0x41, 0xcc, 0x8, 0x32, 0x55, 0x6},
},
{
In: [32]byte{0x73, 0x41, 0x81, 0xcd, 0x1a, 0x94, 0x6, 0x52, 0x2a, 0x56, 0xfe, 0x25, 0xe4, 0x3e, 0xcb, 0xf0, 0x29, 0x5d, 0xb5, 0xdd, 0xd0, 0x60, 0x9b, 0x3c, 0x2b, 0x4e, 0x79, 0xc0, 0x6f, 0x8b, 0xd4, 0x6d},
Base: [32]byte{0xf8, 0xa8, 0x42, 0x1c, 0x7d, 0x21, 0xa9, 0x2d, 0xb3, 0xed, 0xe9, 0x79, 0xe1, 0xfa, 0x6a, 0xcb, 0x6, 0x2b, 0x56, 0xb1, 0x88, 0x5c, 0x71, 0xc5, 0x11, 0x53, 0xcc, 0xb8, 0x80, 0xac, 0x73, 0x15},
Expect: [32]byte{0x11, 0x76, 0xd0, 0x16, 0x81, 0xf2, 0xcf, 0x92, 0x9d, 0xa2, 0xc7, 0xa3, 0xdf, 0x66, 0xb5, 0xd7, 0x72, 0x9f, 0xd4, 0x22, 0x22, 0x6f, 0xd6, 0x37, 0x42, 0x16, 0xbf, 0x7e, 0x2, 0xfd, 0xf, 0x62},
},
{
In: [32]byte{0x1f, 0x70, 0x39, 0x1f, 0x6b, 0xa8, 0x58, 0x12, 0x94, 0x13, 0xbd, 0x80, 0x1b, 0x12, 0xac, 0xbf, 0x66, 0x23, 0x62, 0x82, 0x5c, 0xa2, 0x50, 0x9c, 0x81, 0x87, 0x59, 0xa, 0x2b, 0xe, 0x61, 0x72},
Base: [32]byte{0xd3, 0xea, 0xd0, 0x7a, 0x0, 0x8, 0xf4, 0x45, 0x2, 0xd5, 0x80, 0x8b, 0xff, 0xc8, 0x97, 0x9f, 0x25, 0xa8, 0x59, 0xd5, 0xad, 0xf4, 0x31, 0x2e, 0xa4, 0x87, 0x48, 0x9c, 0x30, 0xe0, 0x1b, 0x3b},
Expect: [32]byte{0xf8, 0x48, 0x2f, 0x2e, 0x9e, 0x58, 0xbb, 0x6, 0x7e, 0x86, 0xb2, 0x87, 0x24, 0xb3, 0xc0, 0xa3, 0xbb, 0xb5, 0x7, 0x3e, 0x4c, 0x6a, 0xcd, 0x93, 0xdf, 0x54, 0x5e, 0xff, 0xdb, 0xba, 0x50, 0x5f},
},
{
In: [32]byte{0x3a, 0x7a, 0xe6, 0xcf, 0x8b, 0x88, 0x9d, 0x2b, 0x7a, 0x60, 0xa4, 0x70, 0xad, 0x6a, 0xd9, 0x99, 0x20, 0x6b, 0xf5, 0x7d, 0x90, 0x30, 0xdd, 0xf7, 0xf8, 0x68, 0xc, 0x8b, 0x1a, 0x64, 0x5d, 0xaa},
Base: [32]byte{0x4d, 0x25, 0x4c, 0x80, 0x83, 0xd8, 0x7f, 0x1a, 0x9b, 0x3e, 0xa7, 0x31, 0xef, 0xcf, 0xf8, 0xa6, 0xf2, 0x31, 0x2d, 0x6f, 0xed, 0x68, 0xe, 0xf8, 0x29, 0x18, 0x51, 0x61, 0xc8, 0xfc, 0x50, 0x60},
Expect: [32]byte{0x47, 0xb3, 0x56, 0xd5, 0x81, 0x8d, 0xe8, 0xef, 0xac, 0x77, 0x4b, 0x71, 0x4c, 0x42, 0xc4, 0x4b, 0xe6, 0x85, 0x23, 0xdd, 0x57, 0xdb, 0xd7, 0x39, 0x62, 0xd5, 0xa5, 0x26, 0x31, 0x87, 0x62, 0x37},
},
{
In: [32]byte{0x20, 0x31, 0x61, 0xc3, 0x15, 0x9a, 0x87, 0x6a, 0x2b, 0xea, 0xec, 0x29, 0xd2, 0x42, 0x7f, 0xb0, 0xc7, 0xc3, 0xd, 0x38, 0x2c, 0xd0, 0x13, 0xd2, 0x7c, 0xc3, 0xd3, 0x93, 0xdb, 0xd, 0xaf, 0x6f},
Base: [32]byte{0x6a, 0xb9, 0x5d, 0x1a, 0xbe, 0x68, 0xc0, 0x9b, 0x0, 0x5c, 0x3d, 0xb9, 0x4, 0x2c, 0xc9, 0x1a, 0xc8, 0x49, 0xf7, 0xe9, 0x4a, 0x2a, 0x4a, 0x9b, 0x89, 0x36, 0x78, 0x97, 0xb, 0x7b, 0x95, 0xbf},
Expect: [32]byte{0x11, 0xed, 0xae, 0xdc, 0x95, 0xff, 0x78, 0xf5, 0x63, 0xa1, 0xc8, 0xf1, 0x55, 0x91, 0xc0, 0x71, 0xde, 0xa0, 0x92, 0xb4, 0xd7, 0xec, 0xaa, 0xc8, 0xe0, 0x38, 0x7b, 0x5a, 0x16, 0xc, 0x4e, 0x5d},
},
{
In: [32]byte{0x13, 0xd6, 0x54, 0x91, 0xfe, 0x75, 0xf2, 0x3, 0xa0, 0x8, 0xb4, 0x41, 0x5a, 0xbc, 0x60, 0xd5, 0x32, 0xe6, 0x95, 0xdb, 0xd2, 0xf1, 0xe8, 0x3, 0xac, 0xcb, 0x34, 0xb2, 0xb7, 0x2c, 0x3d, 0x70},
Base: [32]byte{0x2e, 0x78, 0x4e, 0x4, 0xca, 0x0, 0x73, 0x33, 0x62, 0x56, 0xa8, 0x39, 0x25, 0x5e, 0xd2, 0xf7, 0xd4, 0x79, 0x6a, 0x64, 0xcd, 0xc3, 0x7f, 0x1e, 0xb0, 0xe5, 0xc4, 0xc8, 0xd1, 0xd1, 0xe0, 0xf5},
Expect: [32]byte{0x56, 0x3e, 0x8c, 0x9a, 0xda, 0xa7, 0xd7, 0x31, 0x1, 0xb0, 0xf2, 0xea, 0xd3, 0xca, 0xe1, 0xea, 0x5d, 0x8f, 0xcd, 0x5c, 0xd3, 0x60, 0x80, 0xbb, 0x8e, 0x6e, 0xc0, 0x3d, 0x61, 0x45, 0x9, 0x17},
},
{
In: [32]byte{0x68, 0x6f, 0x7d, 0xa9, 0x3b, 0xf2, 0x68, 0xe5, 0x88, 0x6, 0x98, 0x31, 0xf0, 0x47, 0x16, 0x3f, 0x33, 0x58, 0x99, 0x89, 0xd0, 0x82, 0x6e, 0x98, 0x8, 0xfb, 0x67, 0x8e, 0xd5, 0x7e, 0x67, 0x49},
Base: [32]byte{0x8b, 0x54, 0x9b, 0x2d, 0xf6, 0x42, 0xd3, 0xb2, 0x5f, 0xe8, 0x38, 0xf, 0x8c, 0xc4, 0x37, 0x5f, 0x99, 0xb7, 0xbb, 0x4d, 0x27, 0x5f, 0x77, 0x9f, 0x3b, 0x7c, 0x81, 0xb8, 0xa2, 0xbb, 0xc1, 0x29},
Expect: [32]byte{0x1, 0x47, 0x69, 0x65, 0x42, 0x6b, 0x61, 0x71, 0x74, 0x9a, 0x8a, 0xdd, 0x92, 0x35, 0x2, 0x5c, 0xe5, 0xf5, 0x57, 0xfe, 0x40, 0x9, 0xf7, 0x39, 0x30, 0x44, 0xeb, 0xbb, 0x8a, 0xe9, 0x52, 0x79},
},
{
In: [32]byte{0x82, 0xd6, 0x1c, 0xce, 0xdc, 0x80, 0x6a, 0x60, 0x60, 0xa3, 0x34, 0x9a, 0x5e, 0x87, 0xcb, 0xc7, 0xac, 0x11, 0x5e, 0x4f, 0x87, 0x77, 0x62, 0x50, 0xae, 0x25, 0x60, 0x98, 0xa7, 0xc4, 0x49, 0x59},
Base: [32]byte{0x8b, 0x6b, 0x9d, 0x8, 0xf6, 0x1f, 0xc9, 0x1f, 0xe8, 0xb3, 0x29, 0x53, 0xc4, 0x23, 0x40, 0xf0, 0x7, 0xb5, 0x71, 0xdc, 0xb0, 0xa5, 0x6d, 0x10, 0x72, 0x4e, 0xce, 0xf9, 0x95, 0xc, 0xfb, 0x25},
Expect: [32]byte{0x9c, 0x49, 0x94, 0x1f, 0x9c, 0x4f, 0x18, 0x71, 0xfa, 0x40, 0x91, 0xfe, 0xd7, 0x16, 0xd3, 0x49, 0x99, 0xc9, 0x52, 0x34, 0xed, 0xf2, 0xfd, 0xfb, 0xa6, 0xd1, 0x4a, 0x5a, 0xfe, 0x9e, 0x5, 0x58},
},
{
In: [32]byte{0x7d, 0xc7, 0x64, 0x4, 0x83, 0x13, 0x97, 0xd5, 0x88, 0x4f, 0xdf, 0x6f, 0x97, 0xe1, 0x74, 0x4c, 0x9e, 0xb1, 0x18, 0xa3, 0x1a, 0x7b, 0x23, 0xf8, 0xd7, 0x9f, 0x48, 0xce, 0x9c, 0xad, 0x15, 0x4b},
Base: [32]byte{0x1a, 0xcd, 0x29, 0x27, 0x84, 0xf4, 0x79, 0x19, 0xd4, 0x55, 0xf8, 0x87, 0x44, 0x83, 0x58, 0x61, 0xb, 0xb9, 0x45, 0x96, 0x70, 0xeb, 0x99, 0xde, 0xe4, 0x60, 0x5, 0xf6, 0x89, 0xca, 0x5f, 0xb6},
Expect: [32]byte{0x0, 0xf4, 0x3c, 0x2, 0x2e, 0x94, 0xea, 0x38, 0x19, 0xb0, 0x36, 0xae, 0x2b, 0x36, 0xb2, 0xa7, 0x61, 0x36, 0xaf, 0x62, 0x8a, 0x75, 0x1f, 0xe5, 0xd0, 0x1e, 0x3, 0xd, 0x44, 0x25, 0x88, 0x59},
},
{
In: [32]byte{0xfb, 0xc4, 0x51, 0x1d, 0x23, 0xa6, 0x82, 0xae, 0x4e, 0xfd, 0x8, 0xc8, 0x17, 0x9c, 0x1c, 0x6, 0x7f, 0x9c, 0x8b, 0xe7, 0x9b, 0xbc, 0x4e, 0xff, 0x5c, 0xe2, 0x96, 0xc6, 0xbc, 0x1f, 0xf4, 0x45},
Base: [32]byte{0x55, 0xca, 0xff, 0x21, 0x81, 0xf2, 0x13, 0x6b, 0xe, 0xd0, 0xe1, 0xe2, 0x99, 0x44, 0x48, 0xe1, 0x6c, 0xc9, 0x70, 0x64, 0x6a, 0x98, 0x3d, 0x14, 0xd, 0xc4, 0xea, 0xb3, 0xd9, 0x4c, 0x28, 0x4e},
Expect: [32]byte{0xae, 0x39, 0xd8, 0x16, 0x53, 0x23, 0x45, 0x79, 0x4d, 0x26, 0x91, 0xe0, 0x80, 0x1c, 0xaa, 0x52, 0x5f, 0xc3, 0x63, 0x4d, 0x40, 0x2c, 0xe9, 0x58, 0xb, 0x33, 0x38, 0xb4, 0x6f, 0x8b, 0xb9, 0x72},
},
{
In: [32]byte{0x4e, 0x6, 0xc, 0xe1, 0xc, 0xeb, 0xf0, 0x95, 0x9, 0x87, 0x16, 0xc8, 0x66, 0x19, 0xeb, 0x9f, 0x7d, 0xf6, 0x65, 0x24, 0x69, 0x8b, 0xa7, 0x98, 0x8c, 0x3b, 0x90, 0x95, 0xd9, 0xf5, 0x1, 0x34},
Base: [32]byte{0x57, 0x73, 0x3f, 0x2d, 0x86, 0x96, 0x90, 0xd0, 0xd2, 0xed, 0xae, 0xc9, 0x52, 0x3d, 0xaa, 0x2d, 0xa9, 0x54, 0x45, 0xf4, 0x4f, 0x57, 0x83, 0xc1, 0xfa, 0xec, 0x6c, 0x3a, 0x98, 0x28, 0x18, 0xf3},
Expect: [32]byte{0xa6, 0x1e, 0x74, 0x55, 0x2c, 0xce, 0x75, 0xf5, 0xe9, 0x72, 0xe4, 0x24, 0xf2, 0xcc, 0xb0, 0x9c, 0x83, 0xbc, 0x1b, 0x67, 0x1, 0x47, 0x48, 0xf0, 0x2c, 0x37, 0x1a, 0x20, 0x9e, 0xf2, 0xfb, 0x2c},
},
{
In: [32]byte{0x5c, 0x49, 0x2c, 0xba, 0x2c, 0xc8, 0x92, 0x48, 0x8a, 0x9c, 0xeb, 0x91, 0x86, 0xc2, 0xaa, 0xc2, 0x2f, 0x1, 0x5b, 0xf3, 0xef, 0x8d, 0x3e, 0xcc, 0x9c, 0x41, 0x76, 0x97, 0x62, 0x61, 0xaa, 0xb1},
Base: [32]byte{0x67, 0x97, 0xc2, 0xe7, 0xdc, 0x92, 0xcc, 0xbe, 0x7c, 0x5, 0x6b, 0xec, 0x35, 0xa, 0xb6, 0xd3, 0xbd, 0x2a, 0x2c, 0x6b, 0xc5, 0xa8, 0x7, 0xbb, 0xca, 0xe1, 0xf6, 0xc2, 0xaf, 0x80, 0x36, 0x44},
Expect: [32]byte{0xfc, 0xf3, 0x7, 0xdf, 0xbc, 0x19, 0x2, 0xb, 0x28, 0xa6, 0x61, 0x8c, 0x6c, 0x62, 0x2f, 0x31, 0x7e, 0x45, 0x96, 0x7d, 0xac, 0xf4, 0xae, 0x4a, 0xa, 0x69, 0x9a, 0x10, 0x76, 0x9f, 0xde, 0x14},
},
{
In: [32]byte{0xea, 0x33, 0x34, 0x92, 0x96, 0x5, 0x5a, 0x4e, 0x8b, 0x19, 0x2e, 0x3c, 0x23, 0xc5, 0xf4, 0xc8, 0x44, 0x28, 0x2a, 0x3b, 0xfc, 0x19, 0xec, 0xc9, 0xdc, 0x64, 0x6a, 0x42, 0xc3, 0x8d, 0xc2, 0x48},
Base: [32]byte{0x2c, 0x75, 0xd8, 0x51, 0x42, 0xec, 0xad, 0x3e, 0x69, 0x44, 0x70, 0x4, 0x54, 0xc, 0x1c, 0x23, 0x54, 0x8f, 0xc8, 0xf4, 0x86, 0x25, 0x1b, 0x8a, 0x19, 0x46, 0x3f, 0x3d, 0xf6, 0xf8, 0xac, 0x61},
Expect: [32]byte{0x5d, 0xca, 0xb6, 0x89, 0x73, 0xf9, 0x5b, 0xd3, 0xae, 0x4b, 0x34, 0xfa, 0xb9, 0x49, 0xfb, 0x7f, 0xb1, 0x5a, 0xf1, 0xd8, 0xca, 0xe2, 0x8c, 0xd6, 0x99, 0xf9, 0xc1, 0xaa, 0x33, 0x37, 0x34, 0x2f},
},
{
In: [32]byte{0x4f, 0x29, 0x79, 0xb1, 0xec, 0x86, 0x19, 0xe4, 0x5c, 0xa, 0xb, 0x2b, 0x52, 0x9, 0x34, 0x54, 0x1a, 0xb9, 0x44, 0x7, 0xb6, 0x4d, 0x19, 0xa, 0x76, 0xf3, 0x23, 0x14, 0xef, 0xe1, 0x84, 0xe7},
Base: [32]byte{0xf7, 0xca, 0xe1, 0x8d, 0x8d, 0x36, 0xa7, 0xf5, 0x61, 0x17, 0xb8, 0xb7, 0xe, 0x25, 0x52, 0x27, 0x7f, 0xfc, 0x99, 0xdf, 0x87, 0x56, 0xb5, 0xe1, 0x38, 0xbf, 0x63, 0x68, 0xbc, 0x87, 0xf7, 0x4c},
Expect: [32]byte{0xe4, 0xe6, 0x34, 0xeb, 0xb4, 0xfb, 0x66, 0x4f, 0xe8, 0xb2, 0xcf, 0xa1, 0x61, 0x5f, 0x0, 0xe6, 0x46, 0x6f, 0xff, 0x73, 0x2c, 0xe1, 0xf8, 0xa0, 0xc8, 0xd2, 0x72, 0x74, 0x31, 0xd1, 0x6f, 0x14},
},
{
In: [32]byte{0xf5, 0xd8, 0xa9, 0x27, 0x90, 0x1d, 0x4f, 0xa4, 0x24, 0x90, 0x86, 0xb7, 0xff, 0xec, 0x24, 0xf5, 0x29, 0x7d, 0x80, 0x11, 0x8e, 0x4a, 0xc9, 0xd3, 0xfc, 0x9a, 0x82, 0x37, 0x95, 0x1e, 0x3b, 0x7f},
Base: [32]byte{0x3c, 0x23, 0x5e, 0xdc, 0x2, 0xf9, 0x11, 0x56, 0x41, 0xdb, 0xf5, 0x16, 0xd5, 0xde, 0x8a, 0x73, 0x5d, 0x6e, 0x53, 0xe2, 0x2a, 0xa2, 0xac, 0x14, 0x36, 0x56, 0x4, 0x5f, 0xf2, 0xe9, 0x52, 0x49},
Expect: [32]byte{0xab, 0x95, 0x15, 0xab, 0x14, 0xaf, 0x9d, 0x27, 0xe, 0x1d, 0xae, 0xc, 0x56, 0x80, 0xcb, 0xc8, 0x88, 0xb, 0xd8, 0xa8, 0xe7, 0xeb, 0x67, 0xb4, 0xda, 0x42, 0xa6, 0x61, 0x96, 0x1e, 0xfc, 0xb},
},
}